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Abstract We describe recent results on attainability of sharp constants in the Sobolev
inequality, the Sobolev–Poincaré inequality, the Hardy–Sobolev inequality and related
inequalities. This gives us the solvability of boundary value problems to critical Emden–
Fowler equations.
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1 Introduction

This article is an extended text of my lecture at the Workshop on Variational Analysis and
PDEs in Erice, Sicily, July 2006. It contains recent results on attainability of sharp constants
in critical Sobolev-type inequalities.

Let n ≥ 2, and let � be a smooth compact n-dimensional Riemannian manifold (with
or without boundary; in the sequel we omit the words “smooth”, “compact” and “Riemann-
ian”). For 1 < p < n we denote by p∗ = np

n−p the Sobolev conjugate to p, that is the critical

exponent for the embedding W 1
p(�) ↪→ Lq(�).

Let us consider the classical Sobolev inequality:

λ1(p,�) = inf
v∈ o

W1
p(�)\{0}

‖∇v‖p,�

‖v‖p∗,�
> 0. (I)
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Since the embedding operator
o

W 1
p(�) ↪→ L p∗(�) is noncompact, the problem of

attainability of the norm of this operator (i.e. the problem of existence of an extremal function
in the inequality (I )) is nontrivial. Similar problems were treated in many papers (see, e.g.,
[12,30], and further references therein). The answer heavily depends on the geometry of �.

It is well known that for � being a bounded domain in R
n , the infimum in (I ) is not

attained. Moreover, this infimum does not depend on � and equals 1
K (n,p) , where

K (n, p) ≡ sup
v∈C∞

0 (R
n)\{0}

‖v‖p∗,Rn

‖∇v‖p,Rn
= ω

− 1
n

n−1 · k(n, p), (1)

while

k(n, p) = n− 1
p

( p − 1

n − p

) 1
p′ (B

( n

p
,

n

p′ + 1
))− 1

n

is the sharp constant in the Bliss inequality [11]. The second equality in (1) was obtained in
[4,38]. Note that the supremum in (1) is attained only on radially symmetric functions with
a noncompact support

wε(r) ≡ (ε + r p′
)
1− n

p , ε ∈ R+, (2)

and on their translations and dilations.
On the other hand, see [30], the infimum in (I ) for� � R

n can be attained, under certain
additional assumptions, if one deals with the functions in W 1

p(�) which do not belong to
o

W1
p(�) but vanish on some part of ∂�.
By standard argument it follows that under suitable normalization the minimizer in (I ),

if it exists, is a positive solution of the Dirichlet problem for the critical Emden–Fowler
equation

−�pu = u p∗−1; u
∣∣
∂�

= 0 (I′)

(here �pu = div(|∇u|p−2∇u) is p-Laplacian).
We give sufficient conditions of the existence of minimizers in (I ) and similar inequalities.

This gives us solvability of boundary value problems to corresponding Emden–Fowler type
equations. Also we consider the qualitative properties of solutions. The article is mostly a
survey; however, some results of §6 are new.

Our main tool is the concentration-compactness principle of Lions ([31]; see also [30]).
It is used in various forms; for the problem (I ) it can be reformulated as follows.

Proposition 1 ([15, Proposition 1.1]). Let � be a manifold with boundary. Let the infimum
of the problem (I ) satisfy the inequality

λ1(p,�) <
1

K (n, p)
.

Then the infimum is attained.

We underline that the attainability of infimum in critical case is extremely sensitive to
weak perturbations of the functional. For example, Proposition 1 shows that a weak negative
perturbation of the numerator in (I ) can provide the existence of minimizer in “flat” bounded
domains. This effect was discovered in [13] and was investigated for various problems in a
number of papers, see, e.g. [19]. We do not consider perturbation terms which could help.

The text is organized as follows. In §§2–4 we describe the problems without weight. The
problems with singular weights are treated in §§5–7. In §5 the weight singularity is situated
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in� or at ∂�; in the last case we deal with the Neumann boundary value problem. In §§6–7
we consider the Dirichlet problem with the singularity at ∂�.

Let us introduce some notations. S
n stands for the standard n-dimensional sphere (with

unit scalar curvature). If S
n−1 ⊂ R

n we suppose the center of sphere being at the origin.

ωn−1 = 2πn/2

	( n
2 )

is the area of S
n−1. q ′ = q

q−1 is the Hölder conjugate exponent to q . B is the

Euler beta-function. We use letter C to denote various positive constants.

2 Critical Emden–Fowler equations without weight

Theorem 1 ([15, Theorem 3.1]). Let n ≥ 2. Suppose that � is an n-dimensional manifold
with boundary, and the scalar curvature is positive at some point of�. Then for some β > 0
and for 1 < p < n+2

3 + β, the infimum in (I) is attained.

For� ⊂ S
n and β = 0, this statement was proved in [6] (for p = 2, see also [5] and [7]).

On the other hand, it is shown in [6] that for any 1 < p < n the infimum in (I ) is attained if
� ⊂ S

n is sufficiently large.

As the example of “flat” domain shows, the assumption on curvature of � cannot be
removed. Also, Theorem 1 is sharp in another sence.

Theorem 2 ([15, Theorem 3.2]). Let � be the spherical “hat”

� = {(θ, φ1, . . . , φn−1) ∈ S
n : 0 < θ < θ∗}. (3)

Given β > 0, there exists θ∗(β) > 0 such that for p ≥ n+2
3 + β the infimum in (I) on � is

not attained. In particular, the infimum in (I) on hemisphere (θ∗ = π/2) is not attained for
p ≥ n+1

2 . If β → 0 then θ∗(β) → 0.

For p > n+1
2 and θ∗ ≤ π/2, this statement was proved in [6]. In [8], the explicit upper

bound for θ∗(β) was found. This upper bound is sharp for θ∗ = π/2 and for limits θ∗ → 0,
θ∗ → π . Authors of [8] (as well as the author of survey) believe that it is always sharp.

If we replace
o

W1
p(�) by W 1

p(�) then the quotient (I ) vanishes on constants. There are
some natural ways to avoid this degeneration. The simplest one is to add a weak term in the
numerator. We arrive at the critical embedding theorem

λ2(p,�) = inf
v∈W 1

p(�)\{0}

‖v‖W 1
p(�)

‖v‖p∗,�
> 0 (II)

(the norm of the numerator is defined as ‖v‖p
W 1

p(�)
= ‖∇v‖p

p,� + ‖v‖p
p,�).

Note that under suitable normalization the minimizer in (I I ), if it exists, is a positive
solution of the Neumann problem

−�pu + u p−1 = u p∗−1; ∂u

∂n

∣∣∣
∂�

= 0. (II′)

The problem (I I ′) has a trivial solution u ≡ 1; however, it is shown in [33, Proposition 1.3]
that for p > 2 the minimizer of (I I ) cannot be a constant.

Theorem 3 ([15, Theorem 4.1]). Let n ≥ 5. Suppose that � is an n-dimensional manifold
without boundary, and the scalar curvature is positive at some point of �. Then for some
β > 0 and for 2 < p < n+2

3 + β, the infimum in (II) is attained.
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For 2 < p <
√

n the equivalent statement was proved in [17].
Now let us define � as a “dilation” of � with the metric g(�) = 2 · g(�). Since

the quotient (I I ) is not homogeneous with respect to dilations, the attainability of infimum,
generally speaking, depends on .

Let n ≥ 2, and let � be an arbitrary n-dimensional manifold without boundary or with a
strictly Lipschitz boundary. Then for any 1 < p < n the infimum in (I I ) is attained on �
if  is sufficiently small ([33, Theorem 1.1]).

On the other hand, the so-called optimal Sobolev inequality

‖v‖p
p∗,� ≤ K p(n, p) · ‖∇v‖p

p,� + C(p,�) · ‖v‖p
p,�, v ∈ W 1

p(�), (4)

holds true with some C(p,�) > 0:

• on � = S
n for 1 < p < 2 ([4, Theorem 8]);

• on an arbitrary manifold � without boundary for n ≥ 3 and p = 2 ([25]);
• on the flat torus � = T

n and on the hyperbolic manifold without boundary � = H
n for

any 1 < p < n ([17]).

It is easy to see that (4) implies the non-attainability of infimum in (I I ) on � for
sufficiently large . This implies that, in general, the assumption on curvature of � in
Theorem 3 cannot be removed, and the lower bound on interval for p cannot be reduced.

If � is a manifold with (smooth) boundary then the mean curvature of ∂� (with respect
to the inner normal) plays the role of scalar curvature.

Theorem 4 ([15, Theorem 7.1]). Let n ≥ 2. Suppose that � is an n-dimensional manifold
with smooth boundary, and ∂� contains a point with the positive mean curvature. Then for
some β > 0 and for 1 < p < n+1

2 + β, the infimum in (II) is attained. In particular, it is the
case if � ⊂ R

n is arbitrary bounded domain with ∂� ∈ C2.

For � ⊂ R
n , n ≥ 3 and p = 2 this result was obtained in [1] and [40].

In general, the assumption of the smoothness of ∂� is essential.

Theorem 5 ([15, Theorem 7.2]). Let n ≥ 2. Suppose� is a polyhedron in R
n, and 1 < p <

n. Then the infimum in (II) is not attained on � for sufficiently large .

For n ≥ 3 and p = 2, for� being a rectangular parallelepiped, this statement was proved
in [29, Theorem 1.2], using delicate properties of the solution of the corresponding boundary
value problem.

3 The problems with sign-changing solutions

In this section we consider two more methods to avoid degeneration on constants. In contrast
to (I ) and (I I ), the solutions of corresponding problems, if they exist, change sign in �.

The first one is to subtract the mean value in the denominator of (I ). We arrive at the
Sobolev–Poincaré inequality

λ3(p,�) = inf
v∈W 1

p(�)\{c}
‖∇v‖p,�

‖v − v‖p∗,�
> 0 (III)

(here we use the notation v = |�|−1
∫
�
v).
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Theorem 6 ([15, Theorem 5.1]). Let n ≥ 3. Suppose that � is an n-dimensional manifold
without boundary, and the scalar curvature is positive at some point of �. Then for some
β > 0 and for 1 < p < n+2

3 + β, the infimum in (III) is attained.

For n ≥ 4 and n
n−1 < p < 1

4 (1 + √
1 + 8n) the statement of Theorem 6 was proved

in [41, Theorem 1.2]. In addition, [41, Theorem 1.1] claims the attainability of infimum in
(I I I ) for n ≥ 2 and 1 < p < 1

4 (1 + √
1 + 8n) in the case � = S

n . However, the proof of
this theorem has a gap.

Corresponding result for the manifolds with boundary reads as follows.

Theorem 7 ([15, Theorem 7.3]). Let n ≥ 2. Suppose that � is an n-dimensional manifold
with smooth boundary, and ∂� contains a point with the positive mean curvature (in par-
ticular, it is the case if � ⊂ R

n is arbitrary bounded domain with ∂� ∈ C2). Then for some
β > 0 and for 1 < p < n+1

2 + β, the infimum in (III) is attained.

The second method is to subtract in the denominator of (I ) the best approximation constant
instead of the mean value. We arrive at the problem

λ4(p,�) = inf
v∈W 1

p(�)\{c}
sup
α∈R

‖∇v‖p,�

‖v − α‖p∗,�
> 0. (IV)

Theorem 8 ([15, Theorem 6.1]). Let n ≥ 3. Suppose that � is an n-dimensional manifold
without boundary, and the scalar curvature is positive at some point of �. Then for

1 < p < max{p1, p2} (5)

the infimum in (IV) is attained, where

p1 = 2n + 1 −
√

3n2 + 2n + 1, p2 = n2 + 6n + 2 + √
n4 + 12n3 − 8n + 4

2(5n + 4)
.

Certainly, the condition (5) in Theorem 8 is unsatisfactory, and we are quite sure that it
can be weakened. However, we claim that some upper bound for p is necessary.

Theorem 9 ([15, Theorem 6.2]). Let n ≥ 2. Then for p ≥ n+1
2 the infimum in (IV) on

� = S
n is not attained.

In particular, this theorem disproves the statement of [41, Theorem 1.3].
Theorem 9 allows us to study the symmetry breaking of the extremal in the embedding

theorem on the sphere

λ̃4(n, p, q) = inf
v∈W 1

p(S
n)\{c}

sup
α∈R

‖∇v‖p,Sn

‖v − α‖q,Sn
> 0 (IVa)

for subcritical q . Note that the maximum with respect to α in (I V a) is attained whenever
the relation ∫

Sn

|u|q−2u dVg = 0, (6)

holds true with u = v − α.

Theorem 10 ([15, Theorem 6.3]). 1. Let n ≥ 2, 1 < p < ∞, q = p. Then the extremal
function of (IVa), satisfying (6), is antisymmetric with respect to θ , that is u(θ) = −u(π − θ)
for 0 < θ < π/2.

2. Let n ≥ 2, n+1
2 ≤ p < n. Then there exists β > 0 such that for q ∈ (p∗ − β, p∗) the

extremal function of (IVa), satisfying (6), is not antisymmetric with respect to θ .
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We also formulate the corresponding result for the manifolds with boundary.

Theorem 11 ([15, Theorem 7.4]). Let n ≥ 2. Suppose that � is an n-dimensional manifold
with smooth boundary, and ∂� contains a point with the positive mean curvature (in partic-
ular, it is the case if � ⊂ R

n is arbitrary bounded domain with ∂� ∈ C2). Then the infimum
in (IV) is attained for

1 < p < max{ p̃1, p̃2},
where

p̃1 = 3n + 1 − √
5n2 + 2n + 1

2
, p̃2 = n2 + 3n + 1 + √

n4 + 6n3 − n2 − 2n + 1

2(3n + 2)
.

Remark 1 The exponents p1, p2, p̃1 and p̃2 are monotone functions of n with linear growth
for large n. Moreover, these exponents satisfy

1 < p1 < p2 for 3 ≤ n ≤ 5;
p1 = p2 = 2 for n = 6;
2 < p2 < p1 for n ≥ 7;

1 ≤ p̃1 < p̃2 for 2 ≤ n ≤ 8;
1 < p̃2 < p̃1 for n ≥ 9.

Note that under suitable normalization the minimizers in (I I I ) and (I V ) are sign-changing
solutions of the Neumann problems for equations −�pu = u p∗−1 −C and −�pu = u p∗−1,
respectively.

4 More general equations in � ⊂ R
n

When � ⊂ R
n one can consider the quotients (I )–(I V ) with a more general definition of

‖∇u‖p,�. Namely, let us consider an arbitrary norm M(x) in R
n . Assume, for simplicity,

that M ∈ C1(Rn \{0}), and the function M is strictly convex in non-radial directions. Denote
by Mo(x) the conjugate norm. In particular, if

M(x) = |x |q ≡
( n∑

k=1

|xk |q
) 1

q

, 1 < q < ∞,

then Mo(x) = |x |q ′ .
Let ωn−1,M stand for the area of a unit sphere {x ∈ R

n : M(x) = 1}. In particular, for

M(x) = |x |q we have ωn−1,M = ωn−1,q = q[2	( 1
q +1)]n

	( n
q )

; it is evident that ωn−1,2 = ωn−1.

We introduce an equivalent seminorm ‖∇v‖p,M,� in W 1
p(�) by

‖∇v‖p
p,M,� =

∫

�

Mp(∇v) dx .

Let us replace ‖∇v‖p,� in the numerators of quotients (I )–(I V ) by ‖∇v‖p,M,�.
Corresponding problems are denoted by (IM)–(I VM).

It is proved in [3] by using a convex symmetrization, that

K (n, p,M) ≡ sup
v∈C∞

0 (R
n)\{0}

‖v‖p∗,Rn

‖∇v‖p,M,Rn
= ω

− 1
n

n−1,M · k(n, p). (7)
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The supremum in (7) is attained only on the functionswε(r), defined by (2), with r = Mo(x).
Note that the same statement was obtained in [14] by using the mass transportation approach
(the generalized Monge–Kantorovich problem).

This statement implies that for� being a bounded domain in R
n , the infimum in (IM) is

not attained, it does not depend on � and equals 1
K (n,p,M)

.

Theorem 12 ([15, Theorem 9.1]). The statement of Theorem 4 is valid for the problem (IIM);
the statement of Theorem 7 is valid for the problem (IIIM); the statement of Theorem 11 is
valid for the problem (IVM).

Note that under suitable normalization the minimizers in (I IM)–(I VM) are solutions of
the Neumann problems

−�p,Mu = u p∗−1−u p−1 for (I IM),

−�p,Mu = u p∗−1−C for (I I IM),

−�p,Mu = u p∗−1 for (I VM),

⎫⎬
⎭ ; 〈n·∇M(ξ)〉

∣∣∣ ξ=∇u
x∈∂�

= 0.

Here

�p,Mu = div
(
Mp−1(ξ)∇M(ξ)

∣∣∣
ξ=∇u

)

is the generalized p-Laplacian, generated by M. In particular, for M(x) = |x |q we have

�p,Mu = �p,qu ≡
n∑

j=1

(
|∇u|p−q

q |ux j |q−2ux j

)
x j
.

Notice that �p,2 is the conventional p-Laplacian, while �p,p is the so-called pseudo-
p-Laplacian (see, e.g. [10,26]). The properties of the solutions of the Dirichlet problem
for the equations with the operator�p,M of a general form and a subcritical right-hand side,
were studied in [9].

Theorem 13 ([15, Theorem 9.3]). Let n ≥ 2. Suppose that � is the flat torus T
n or a

polyhedron in R
n, 1 < p < n. Then the infimum in (IIM) is not attained on � for suffi-

ciently large .

5 The equations with singular weight. Interior singularities. The Neumann problem
with boundary singularity

Let x0 ∈ �. Consider a weighted Lebesgue space Lq,σ (�) with the norm

‖v‖q,σ,� = ‖rσ−1v‖q,�,

where r = dist(x, x0). For � ⊂ R
n we can assume, without loss of generality, x0 = 0.

For 1 < p < ∞ and 0 ≤ σ ≤ min{1, n
p } we denote by p∗

σ = np
n−σ p the critical exponent

for the embedding W 1
p(�) ↪→ Lq,σ (�). In this section we deal with the case p < n.

For the corresponding embedding theorem in R
n

K (n, p, σ ) ≡ sup
v∈C∞

0 (R
n)\{0}

‖v‖p∗
σ ,σ,R

n

‖∇v‖p,Rn
< ∞, (8)

the case σ = 1 leads to the Sobolev inequality, while the case σ = 0 provides the Hardy
inequality. Therefore, (8) is often referred as the Hardy–Sobolev inequality.
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It is proved in [19], see also [23], that for arbitrary 1 < p < n and 0 < σ < 1, the
supremum in (8) is attained only on radial functions with a noncompact support

wε,σ (r) ≡ (
ε + r

p′ σ p∗
σ

p∗ )− n
σ p∗
σ , ε ∈ R+.

The case p = 2, n ≥ 3, was treated earlier in [28]. The value of supremum in (8) equals (see
[15, §8])

K (n, p, σ ) = ω
− σ

n
n−1

(σ
n

) 1
p
( p − 1

n − p

) 1
p′ ( p∗

σ p∗
σ

) 1
p∗
σ

(
B
( n

σ p
,

n

σ p′ + 1
))− σ

n
.

Let us replace the norm ‖ · ‖p∗,� in the denominators of quotients (I )–(I V ) by the norm
‖ · ‖p∗

σ ,σ,�
and denote these problems by (Iσ )–(I Vσ ).

The statements on attainability of infima in the problems (I )–(I I I ) are generalized for
problems (Iσ )–(I I Iσ ).

Theorem 14 ([15, Theorem 8.1]). Let n ≥ 2. Suppose that � is an n-dimensional manifold
with boundary. Let x0 /∈ ∂� be a point with the positive scalar curvature. Then, for a given
0 < σ < 1, there exists β > 0 such that for 1 < p < n+2

3 +β the infimum in (Iσ ) is attained.
Let n ≥ 5. Suppose that � is an n-dimensional manifold without boundary. Let x0 be a

point with the positive scalar curvature. Then, for a given 0 < σ < 1, there exists β > 0
such that for 2 < p < n+2

3 + β the infimum in (I Iσ ) is attained.
Let n ≥ 3. Suppose that � is an n-dimensional manifold without boundary. Let x0 be a

point with the positive scalar curvature. Then, for a given 0 < σ < 1, there exists β > 0
such that for 1 < p < n+2

3 + β the infimum in (I I Iσ ) is attained.

Theorem 15 Given β > 0, there exists θ∗ > 0 such that if � is the spherical “hat” (3) and
x0 ∈ � then for p ≥ n+2

3 + β and for any 0 < σ < 1 the infimum in (Iσ ) is not attained.

Proof By spherical symmetrization we reduce the general location of x0 to the case where
x0 is the pole θ = 0. In this case the statement is proved in [15, Theorem 8.2]. ��

Theorem 16 ([15, Theorem 8.3]). Let n ≥ 2. Suppose that � is an n-dimensional manifold
with a strictly Lipschitz boundary. Let ∂� ∈ C2 in a neighborhood of the point x0 ∈ ∂�, and
let H(x0) > 0. Then, for a given 0 < σ < 1, there existsβ > 0 such that for 1 < p < n+1

2 +β
the infimum in (I Iσ ) is attained.

Under the same assumptions, for a given 0 < σ < 1, there exists β > 0 such that for
1 < p < n+1

2 + β the infimum in (I I Iσ ) is attained.

The analogs of Theorems 8 and 11 for the problem (I Vσ ) can be proved by the same
method. However, for σ �= 1, the restrictions imposed on p turn out to be even more “wild”.
The analog of Theorem 12 for 0 < σ < 1 is also obtained in [15].

In [20, §5] the problem (I Iσ )was considered for� ⊂ R
n , n ≥ 3, x0 ∈ ∂� and p = 2. The

last theorem of this paper (Theorem 5.4) claims, without proof, the attainability of infimum
in (I Iσ ) for arbitrary 1 < p < n. We conjecture, that this theorem is false without additional
assumption p ≤ n+1

2 ; under this assumption, it follows from the first part of our Theorem
16.
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6 The Dirichlet problem with boundary singularity in cones and in perturbed cones

In this section we consider � ⊂ R
n and arbitrary 1 < p < ∞. Denote by Ẇ 1

p(�) the
completion of C∞

0 (�) with respect to the norm ‖∇v‖p,�. For bounded � it is obvious that

Ẇ 1
p(�) = o

W1
p(�).

Let us consider the Hardy–Sobolev inequality in �

λ1(p, σ,�) = inf
v∈Ẇ 1

p(�)\{0}
‖∇v‖p,�

‖v‖p∗
σ ,σ,�

> 0. (Iσ )

For p < n and 0 ∈ � it was discussed in §5.

Proposition 2 ([32, Propositions 2.1 and 2.2]). Let n < p < ∞, and let� ⊂ R
n \ {0}. Then

for any 0 ≤ σ ≤ n
p the inequality (Iσ ) holds true.

Let p = n, and let � ⊂ R
n \ � where � is a ray beginning at the origin. Then for any

0 ≤ σ < 1 the inequality (Iσ ) holds true.

Note that under suitable normalization the minimizer in (Iσ ), if it exists, is a positive
solution of the Dirichlet problem

−�pu = u p∗
σ−1

r (1−σ)p∗
σ

in �; u
∣∣
∂�

= 0. (9)

It is worth to note that for p = n the exponent in the denominator of (9) does not depend on
σ and equals n.

Remark 2 Actually, for p = n the assumption on � in Proposition 2 can be considerably
weakened. However, for � being a cone, this assumption is sharp.

Theorem 17 ([32, Theorem 3.1]). Let 1 < p < ∞, 0 < σ < min{1, n
p }. Let� be a cone in

R
n such that

� �= R
n if p > n;

� �= R
n, � �= R

n \ {0} if p = n.
(10)

Then the infimum in (Iσ ) is attained.

For n ≥ 3 and p = 2 this result was obtained in [18].
Next Theorem provides the sharp constants in the Hardy inequality in cones.

Theorem 18 Let 1 < p < ∞, σ = 0. Let � be a cone in R
n satisfying (10). Then the

infimum in (I0) is not attained and equals (�(p)(G))
1
p , where G = � ∩ S

n−1 while

�(p)(G) = min
v∈ o

W1
p(G)\{0}

∫

G

((
n−p

p

)2
v2 + |∇′v|2

) p
2

dS
∫

G
|v|p dS

(11)

(here ∇′ stands for the tangential gradient on S
n−1 ⊂ R

n).

Proof First, the minimum in (11) is attained due to the compactness of embedding
o

W1
p(G) ↪→

L p(G). Denote by V the minimizer of (11) normalized in L p(G). By standard argument, V
is positive in G.

123



298 J Glob Optim (2008) 40:289–303

Let us define U (r,�) = r1− n
p V (�), where (r,�) are spherical coordinates in �. Then

for any h ∈ C1
0(�) we have

∫

�

|∇U |p−2∇U · ∇h dx =
∫

�

|∇U |p−2(Ur hr + 1

r2 ∇′U · ∇′h) dx

=
∫

G

(( n−p
p

)2
V 2 + |∇′V |2

) p−2
2

V ·
∞∫

0

p−n
p r

n
p −1hr drdS

+
∞∫

0

∫

G

(( n−p
p

)2
V 2 + |∇′V |2

) p−2
2 ∇′V · ∇′h r

n
p −2 dSdr

=
∞∫

0

∫

G

(( n−p
p

)2
V 2 + |∇′V |2

) p−2
2

(( n−p
p

)2
V h

+∇′V · ∇′h
)

r
n
p −2 dSdr

∗= �(p)(G)

∞∫

0

∫

G

V p−1h r
n
p −2 dSdr = �(p)(G)

∫

�

U p−1

r p
h dx

(12)

(the equality (∗) follows from the weak Euler–Lagrange equation for V ). Thus, U is a positive

weak solution of the equation −�pu = �(p)(G) u p−1

r p .
The relation�(p)(G) ≤ λ

p
1 (p, 0,�) follows now from [34, Theorem 2.3]. For the reader’s

convenience we reproduce the proof based on the so-called generalized Picone identity (see
[2]).

For any u ∈ C∞
0 (�) we set h = |u|p

U p−1 . Then (12) implies

�(p)(G)
∫

�

|u|p

r p
dx = �(p)(G)

∫

�

U p−1

r p
h dx =

∫

�

|∇U |p−2∇U · ∇h dx

=
∫

�

(
p|∇U |p−2∇U · ∇u

|u|p−2u

U p−1 − (p − 1)|∇U |p |u|p

U p

)
dx

∗≤
∫

�

(
p|∇u| · |∇U |p−1 |u|p−1

U p−1 − (p − 1)|∇U |p |u|p

U p

)
dx

≤
∫

�

|∇u|p dx . (13)

Here (∗) is the Cauchy inequality while the last inequality follows from

x p − pxy p−1 + (p − 1)y p ≥ 0, x, y > 0. (14)

By approximation, (13) holds true for u ∈ Ẇ 1
p(�).
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To prove �(p)(G) = λ
p
1 (p, 0,�) we consider the sequence

uδ(r,�) =
{

r1− n
p +δV (�), r ≤ 1;

r1− n
p −δV (�), r ≥ 1.

Clearly, uδ ∈ Ẇ 1
p(�). Direct computation shows

∫

�

(
|∇uδ|p −�(p)(G)

|uδ|p

r p

)
dx = 1

pδ

∫

G

[(( n−p
p + δ

)2
V 2 + |∇′V |2

) p
2

+
(( n−p

p − δ
)2

V 2 + |∇′V |2
) p

2 − 2�(p)(G)V p
]

dS

= 1

pδ

∫

G

[(( n−p
p + δ

)2
V 2 + |∇′V |2

) p
2

+
(( n−p

p − δ
)2

V 2 + |∇′V |2
) p

2

− 2
(( n−p

p

)2
V 2 + |∇′V |2

) p
2
]

dS = O(δ), (15)

and the statement follows.
Finally, the equality sign in (∗) means ∇u ‖ ∇U while the equality in (14) means x = y.

These two facts imply

∇u

u
= ∇U

U
�⇒ u = cU

on the set {u �= 0} and, therefore, in the whole �. Since U /∈ Ẇ 1
p(�), the equality in (13) is

impossible. ��
For p < n, � = R

n and for p > n, � = R
n \ {0} this result is well known, see, e.g.,

[24, Theorem 330]. For arbitrary cone the cases p = 2 and p = n were considered in [32,
Propositions 4.1 and 4.2].

Consider now the case p > n, � = R
n \ {0}, σ > 0. If the minimizer in (Iσ ) was a

radial function, the quantity λ1(p, σ,�) could be expressed explicitely, see [11]. However,
in general it is not the case.

Theorem 19 ([32, Theorem 4.1]). Let p > n,� = R
n \ {0}. There exists σ̂ (n, p) < n

p such
that for σ̂ < σ < n

p the minimizer in (Iσ ) is a nonradial function.

Corollary 1 Let p > n, � = R
n \ {0}. Then for σ̂ < σ < n

p the problem (9) has at least
two different positive solutions.

Finally, we consider � being a perturbed cone.

Theorem 20 Suppose that 1 < p < ∞, 0 ≤ σ < min{1, n
p }, �1 is a cone satisfying (10),

�2 � R
n \ {0} and �1 ∩�2 �= ∅.

1. For � = �1 \�2 the infimum in (Iσ ) is not attained.
2. For � = �1 ∪�2 the infimum in (Iσ ) is attained if Ẇ 1

p(�) �= Ẇ 1
p(�1).
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Proof 1. For any u ∈ C∞
0 (�1) there exists a dilation � such that �u ∈ C∞

0 (�). Due to the
dilation invariance of (Iσ ) we conclude that λ1(p, σ,�) = λ1(p, σ,�1).

Thus, if u minimizes the quotient (Iσ ) on Ẇ 1
p(�) then its zero continuation minimizes

(Iσ ) on Ẇ 1
p(�1). Therefore, it is the nonnegative solution of the problem (9). By Harnack’s

inequality ([39]), it is positive in �1, a contradiction.

2. Let σ > 0. Then, by Theorem 17, there exists a function u positive in�1 that minimizes
the quotient (Iσ ) on Ẇ 1

p(�1). If λ1(p, σ,�) = λ1(p, σ,�1) then the zero continuation of

u minimizes (Iσ ) on Ẇ 1
p(�) that again leads to contradiction. Therefore, λ1(p, σ,�) <

λ1(p, σ,�1).
Now let σ = 0. As in Theorem 18, we define a positive weak solution U of the equation

−�pu = λ
p
1 (p, 0,�1)

u p−1

r p in �1. Then the relation (15) shows that U is the ground state
for the functional

Q(u) =
∫ (

|∇u|p − λ
p
1 (p, 0,�1)

|u|p

r p

)
dx,

that means Q is degenerately positive in �1 ([34]; see also [35] for p = 2). By [34,
Proposition 4.2], Q is nonpositive in �, i.e. λ1(p, 0,�) < λ1(p, 0,�1).

In both cases, the statement follows by the concentration-compactness principle. ��
For p = 2 and σ = 0 this statement was proved in [36].

7 The Dirichlet problem with boundary singularity in bounded domains

In this section we treat the case p = 2, 0 < σ < 1. For the sake of brevity we use the notation
q = 2∗

σ .
Let us denote by φ the extremal function of the problem (Iσ ) for p = 2 and � = R

n+. If
we normalize φ by ‖φ‖q,σ,Rn+ = 1 then φ is a solution of the Dirichlet problem

−�u = λ2
1(2, σ,R

n+) · uq−1

|x |q(1−σ) in R
n+, u

∣∣
xn=0 = 0.

By standard elliptic theory, see, e.g., [27], φ ∈ C2(Rn+ \ {0}).
Theorem 21 ([16, Theorem 2.1]). Let n ≥ 2. Then, for small |x |

φ(x) ∼ Cxn, |∇φ(x)| ∼ C;
for large |x |

φ(x) ∼ Cxn

|x |n , |∇φ(x)| � C

|x |n .

Now let � be a bounded domain, and let ∂� ∈ C1 in some neighborhood of the origin.
We define the Cartesian coordinates y with y′ = (y1, . . . , yn−1) in the tangent plane and
Oyn directed into �. Then, in a neighborhood of the origin, ∂� is given by the equation
yn = F(y′). It is easily seen that F ∈ C1 and F(y′) = o(|y′|).

We assume that ∂� is average concave in a neighborhood of the origin, i.e. for sufficiently
small r

f (r) :=
∫

rSn−2

− F(y′) < 0
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(here the dashed integral stands for the mean value). Trivially f ∈ C1.
We assume also that f is regularly varying at zero i.e., given t > 0,

lim
r→0

f (tr)

f (r)
= tγ , (16)

and 1 ≤ γ ≤ n + 1.
It is well known, see, e.g. [37], that (16) implies f (r) = −rγ ψ(r) where ψ is a slowly

varying function at zero. Note that for γ = 1 the relation F(y′) = o(|y′|) implies
lim
r→0

ψ(r) = 0. For γ = n + 1 we assume in addition that
∫ 1

0
ψ(s)

s ds = +∞.

Let us introduce the function

f2(r) :=
∫

rSn−2

− |∇F(y′)|2.

Assume that

lim
r→0

f2(r)

f (r)
r = 0. (17)

Theorem 22 ([16, Theorem 3.1]). Let n ≥ 2. Let ∂� satisfy the above assumptions. Then
for p = 2 and for arbitrary 0 < σ < 1 the infimum in (Iσ ) is attained.

In [20] this result was obtained for n ≥ 4 and ∂� ∈ C2, all principal curvatures of ∂�
at the origin were assumed negative. Some calculation errors in [20] do not influence on the
result. In [21,22] the statement of Theorem 22 was proved under the assumption that the
mean curvature of ∂� at the origin is negative. [21] also deals only with n ≥ 4, in [22] the
case n ≥ 3 is considered.

Note that if H(0) < 0 then, as r → 0,

f (r) ∼ −Cr2, f2(r) ∼ Cr2.

Thus, the relation (16) holds true with γ = 2. The relation (17) is also fulfilled. We underline
that the hypotheses of Theorem 22 do not assume even the existence of the mean curvature
(if γ < 2). On the other hand, for γ > 2, H(0) = 0. Moreover, the assumption (17) can
satisfy even if the main term of the asymptotic expansion of F vanishes under average. For
example, it is the case if F(y′) = y3

1 − y4
2 .
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